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A modified image enhancement algorithm based
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Cheng Li (ooo ¤¤¤)∗, Shan Gao (ppp ììì), and Duyan Bi (...!!!���)

Signal and Information Processing Lab, Engineering College of Air Force Engineering University,

Xi’an 710038, China
∗E-mail: ecm li@163.com

Received April 27, 2009

According to the color constancy theory, a modified variation Retinex is proposed for improving the
visibility of the dark regions in images under insufficient and/or non-uniform lighting conditions. A new
penalty functional based on nonlinear diffusion and correlation between the reflectance and the given
image is designed for the intensity image enhancement, followed by adaptive color compensation. With
high computational efficiency achieved by an improved multi-resolution algorithm, simulation results prove
that the proposed method shows more colorful and vivid visual performance, and achieves wider dynamic
range with higher objective standard values.
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Color is actually not an attribute that can be attached to
the objects but basically a result of the processing done
by the brain and the retina. The human visual system
has such an ability that can determine the colors of ob-
jects irrespective of the illuminant, which is called color
constancy[1]. As the computational model, the Retinex
theory considers that color perception by human eyes
does not depend on the light reflected by the object, but
correlates with integrated reflectance. The formation of
a given image S can be decomposed into two parts: the
reflectance image R and the illumination image L, and
at each pixel S(x, y) = R(x, y) × L(x, y). The goal of
the Retinex is to bring out the reflectance part which
reveals the truth of the scene or object, and lead to im-
prove the brightness, contrast, and high dynamic range
of image. For images suffering from insufficient and/or
non-uniform lighting leading to dark regions containing
information, Retinex is the very solution. Since its foun-
dation, Retinex algorithms have gone through three typ-
ical periods. Following the two random walk types by
Land[2] and a series of center/surround opponent oper-
ations by Jobson et al.

[3], Kimmel et al.
[4] proposed a

variational framework that unifies many previous ones,
and concluded the estimation of L to a Quadratic Pro-
gramming (QP) optimization problem by minimizing the
energy functional via its related Euler-Lagrange (E-L)
equations.

Retinex algorithms firstly convert the three compo-
nents to the logarithmic domain with the multiplication
changing into addition, which are s = l + r, s=log(S),
l=log(L), and r=log(R). Kimmel et al. brought about
the variational framework via[3]

min {F [l]} =

∫

Ω

(|∇l|2 + α|l − s|2 + β|∇(l − s)|2)dxdy,

s.t. l ≥ s and 〈∇l, ~n〉 = 0 on ∂Ω, (1)

where Ω is the support of the image, ∂Ω is its boundary,
~n is the normal to the boundary, α and β are free non-
negative real parameters. Three penalty terms in F [l]
force l’s smoothness, proximity between l and s, and r’s

smoothness, respectively. The numerical process of Eq.
(1) employs the Projected Normalized Steepest Descent
(PNSD) with a NSD iteration format.

Because of the equivalence between the Gaussian ker-
nel and solution to the heat diffusion equation, Partial
differential equation (PDE)-based approaches[5] offer a
good summary and provide a good tool for the Retinex
algorithm. However, for failing to reconstruct piece-
wise constant illumination with a linear diffusion pro-
cess, Kimmel’s variational Retinex suffers from artificial
halos and color distortion. Several methods[6] based on
the nonlinear diffusion process combined into the time-
evolution presented better performances, but they were
not reasonable enough to be related with the basic as-
sumptions which lead to constructions of the energy func-
tional.

To cope with this basic problem, another new modified
nonlinear diffusion term is considered especially as well
as high iteration efficiency in the letter. We present the
algorithm in HSI color-space for its simplicity as the clas-
sical intuitive color system, and compare its performance
with other previous algorithms’ on the basis of subjec-
tive and objective standards. The intensity component
image I is enhanced by the proposed modified variational
Retinex, and the S component image is adaptively ad-
justed with the H one remaining the same.

Global spatial smoothness of the luminance image is
the basic assumption in Retinex theory. Especially, the
third item in Eq. (1) assures the reflectance’s smooth-
ness, but the Bayesian penalty expression is at a certain
loss of detail and edge’s information. Because

∫

|∇X |2 as
the smoothness’ realization focuses much on decreasing
the gradient norm, and would impose bad effects on dis-
continuous jump in the reflectance r. As it is forced upon
in Kimmel’s algorithm, it would blur the r and cause ar-
tificial halos. So another basic assumption should be
considered that an item reflect the r’s boundary based
on gradient norm. And we deem that information in the
gradient domain of the reflectance r and the given image
s has a high correlation. Hence, we modify the penalty
functional in Eq. (1) by replacing the third item with a
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new nonlinear diffusion one |∇(l − s)|2|∇s|2 to preserve
the detail-and-edge information of r. Combined with the
correlation between r and s, the modified energy func-
tional is formulated as

min
l

{F [l]} =

∫

Ω

(

|∇l|2 + α|l − s|2

−β|∇(l − s)|2|∇s|2
)

dxdy,

s.t. l ≥ s and 〈∇l, ~n〉 = 0 on ∂Ω, (2)

where β is the parameter to adjust the correlation stated
above. Obviously, minimization of the F [l] calls for sub-
traction of such a correlation from it, that is why there
exists a subtraction sign before the third item in Eq. (2).

The energy functional is solved via the E-L equation,
which is given by

EL(l)= α(l − s) − ∆l + βdiv(|∇s|
2
|∇(l − s)|)

= 0 (s.t. l ≥ s). (3)

In Eq. (3), the third item provides nonlinear diffusion
process, for |∇s|2, the conductive coefficient or edge-
stopping function, is dependent on the image. In Ref.
[6], P M diffusion is introduced by the second-order edge-
stopping function, which tends to cause blocky effects
and false edges. Compared with it, we put more atten-
tion on the correlation of gradient information between
s and r, deem that the edges and details of the r derive
from s, and replace the so-called anisotropic function by
the norm of s, which can not only preserve the edge in-
formation, but also eliminate the blocky effects caused
by edge effects. With the result, the performance is in
proximity to the fourth-order PDEs but with less com-
plexity apparently.

To solve the Eq. (3), we also introduce the artificial
time-variable t transforming it into the gradient descent
flow or so-called time-evolution equation described as

∂l/∂t = −[α(l − s) − ∆l

+βdiv(|∇s|
2
|∇(l − s)|)] (s.t. l ≥ s). (4)

Projecting onto the constraint l ≥ s is done by max
(ln, s) in the iteration. The proposed nonlinear diffusion
considers both of edge-preservation and diffusion effects,
assuring the piecewise constant illumination and re-
flectance.

Equation (4) converges slowly, and we also have to ap-
ply the multi-resolution solution which was firstly used
by McCann[7]. From estimating the coarsest resolution to
the finest one, few iterations at each level are enough for
convergence[4]. The pyramid of image s should be firstly
constructed, Kimmel used the Gaussian kernel convolu-
tion to smooth the image, but it is the linear diffusion
process with a lot of drawbacks, most importantly, the
great loss of edge information. The construction of scale-
space should keep the edge-detail which dose a good job
for estimation loop at each resolution layer. So, we apply
the regularized P M for pyramid construction which fur-
ther transforms the assumption that l be smooth to that
l be piecewise smooth ab ovo, and this will do work in
further. The sampling is by 2:1 ratio, that is to say, the
average value of the four-neighboring block substitutes

it.
For better contrast, linear diffusion takes place of the

Gaussian kernel which acts as only once in the iteration.
The two iteration times are both set to 10. For regular-
ized P M, we choose the second edge-stopping function
c = 1/[1 + (|grad (I) |/K)2], and other parameters are
K = 10, dt =0.2, and σ2 = 0.1. The results are shown in
Fig. 1, from which we can see more details in every layer
of the latter one.

After the initialization, the numerical process of Eq.
(4) is conducted, there is no other special about the nu-
merical scheme which is of little key points except 1) the
initial condition is set to the maximum of the image; 2)
when updating the next resolution layer, the result is up
scaled (2:1 ratio) by pixel replication in the neighbor-
hood. By the multi-resolution solution based on regular-
ized P M, we can obtain more edged and vivid images
than precious pyramid-construction.

In HSI color space, it is easy and indispensable to re-
touch the S component for color compensation. The
aim can be achieved by histogram equalization, median
filtering, gamma correction etc. On the basis of above
methods, we bring about an adaptive method as

Sa(x, y) =

{

k · S(x, y) if k > Thr,
S(x, y) else

k = Ia(x, y) · Ia AV /I2(x, y), (5)

where Ia AV is the mean of the enhanced I component
Ia; k acts as the adaptive coefficient, which may be
rewrote as k = [Ia(x, y)/I(x, y)] · [Ia AV /I(x, y)] contain-
ing two parts: the former is the enhanced ratio of I com-
ponent defined as kI , and the latter is the adjustment
for kI . The construction of k reflects the composition of
global and local impact. And the Thr is also set to 1[8].
With the adaptive k will validate the basic idea in Ref.
[8] that is the enhancement of S component in propor-
tion to the enhanced ratio of I component would make
the color clearer.

For the image quality assessment evaluating Retinex al-
gorithms’ performance, subjective quality metrics behave
best, and there also have been many objective measures
such as Mean, Variance, Entropy, Structural Similarity
(SSIM) and so on[9,10]. Definition is also an efficient
standard conducted in the gradient domain, especially
for evaluating the degree of details and contrasts of the
image. In the letter, we apply it to quantify the degree
of visibility improvement achieved by different Retinex
algorithms and it is given by

Def =
1

MN

M
∑

m=1

N
∑

n=1

√

(Ix(m, n))2 + (Iy(m, n))2, (6)

where Ix, Iy are two direction gradients of a given image
I(m, n) with the size of [M , N ]. Gradient can be calcu-
lated by central difference to obtain two-order precision.
Actually, the bigger the definition value is, the clearer
the image is achieved.

We apply the proposed algorithm to several typical
testing images which suffer from bad illumination, low
dynamic range, and off-color tone. Parameters for the
Pyramid construction are the same as these stated in
Fig. 1. Typical results correspond to α = 0.0001 and
β = 0.1, which is similar to Kimmel’s, but there is
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different performance on enhancement. And we also in-
volve the alternative illumination correction by Gamma
correction used in Kimmel’s Retinex. The only parame-
ter γ is set during the process. The number of resolution
layer changes with the size of image by the largest power
of 2. When meeting the odd num of row or column, we
expand the image to the nearest dimension of even size.
And the size of 5×5 is set to be the smallest block for
the coarsest resolution.

Firstly, we compare the difference between two varia-
tional frameworks, with the same parameters for testing
synthetic images. We can see the different performance
of them in Fig. 2. There are more sharp edges we can ob-
tain than the Kimmel’s, just for the nonlinear diffusion
introduced in the F [l]. Then, we compare the proposed
algorithm with both MSRCR and Kimmel’s Retinex for
natural images. We apply the TruView’s Photo Flair to
evaluate the MSRCR, with the “Scenic Mode, Default
scales (5 20 240), autolevel and white balance”, we could
see that it has already partially restrained MSRCR’s
drawbacks such as colors shifting to gray because of
gray-world assumption. Parameters for Kimmel’s are
set to default as in Ref. [4] during the multi-resolution
algorithm and post-processing. While our proposed al-
gorithm in HSI color-space with much bigger value of
γ, which could bring less effect of illumination image L.
From the results in Figs. 3 and 4, we can see that our al-
gorithm could present more vivid high-contrast enhanced
image, especially in the dark regions, achieving the dy-
namic range compression. And for choosing the HSI

Fig. 1. Two pyramid constructions with 10-time iteration.

Fig. 2. Synthetic images to test performance.

color space and adaptive adjustment of S component, we
obtain more colorful results avoiding color distortion.

Except for subjective evaluation, the typical objective
evaluation values are in list in Table 1. With common
standards for global and local contrast, the proposed
algorithm offers better results than others’. And further
experiments witness that the proposed algorithm is sta-
ble for a wide range of α, β in Fig. 5 and Table 2.

In conclusion, a modified variation Retinex based
on nonlinear diffusion in the HSI color space is intro-
duced. We focus more on the correlation between the
reflectance image and the given image, and modify the
multi-resolution algorithm by adopting the regularized
P M for pyramid construction. With the adaptive ad-
justment of S component, experimental results give bet-
ter visible enhanced images with wider dynamic range
and vivid color. And further application such as haze
removal and shadow removal etc. will be conducted
with the proposed algorithm to validate its efficiency.

Table 1. Objective Evaluations

Fig. 3 Original
MSRCR Kimmel’s Proposed“Girl” image

Mean 61.7563 79.0505 118.2644 126.8826

Variance 67.5909 68.14 55.375 66.5674

Definition 9.9881 18.9286 13.4213 19.5995

Fig. 4 Original
MSRCR Kimmel’s Proposed“Ben” image

Mean 74.9878 85.7159 136.3939 125.3696

Variance 56.8752 59.5649 51.7086 62.7979

Definition 9.8999 14.0311 12.0999 14.3809

Table 2. Objective Evaluations for Robust
Evaluation

Fig. 5 “Girl”
α=1, β=0.1, α=0.0001, β=0.0001,

γ=2.2 γ=2.2

Mean 111.7442 97.9513

Variance 62.7043 67.1937

Definition 13.649 15.2743

Fig. 3. Enhanced results for “Girl”. (a) Input image, (b)
PhotoFlair’s MSRCR, (c) Kimmel’s Retinex, and (d) pro-
posed algorithm (γ=5).
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Fig. 4. Enhanced results for “Ben”. (a) Input image, (b)
PhotoFlair’s MSRCR, (c) Kimmel’s Retinex, and (d) pro-
posed algorithm (γ=3).

Fig. 5. Robust evaluation. (a) α=1, β=0.1, γ=22, (b)
α=0.0001, β=0.0001, γ=2.2.
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